Jan 19,2017
 MFM 2PI

Unit \#4 - Algebraic Expressions
 Lesson \#6 - Review

Multiply Two Binomials

Multiply everything in the first bracket by everything in the second bracket.

$$
\begin{aligned}
& (5 x-6)(2 x+3) \\
= & 10 x^{2}+15 x-12 x-18 \\
= & 10 x^{2}+3 x-18
\end{aligned}
$$

Common Factoring

Look for the greatest common factor (GCF) that divides evenly into all the terms.

$$
6 x \Rightarrow 1,2,3,6
$$

$$
\left\{\begin{array}{ll}
6 x+3 x^{2}-9 x^{3} \\
=3 x\left(\frac{6 x}{3 x}+\frac{3 x^{2}}{3 x}-\frac{9 x^{3}}{3 x}\right) & \begin{array}{l}
3 x^{2} \rightarrow 1,3 \\
9 x^{3} \rightarrow 1, x^{2} \\
\rightarrow=3 x
\end{array} \\
=3 x\left(2+x, x^{2}, x^{3}\right.
\end{array}\right] \begin{array}{ll}
\frac{9 x \cdot x \cdot x}{3 x} \\
3 x^{2}
\end{array}
$$

Factoring Trinomials

Simple trinomials are of the form $x^{2}+b x+c$. Determine the two numbers that multiply to make c and add to make b .
a) $x^{2}-7 x+10$
b) $x^{2}+13 x-30$
$=(x-5)(x-2)$ $=(x+15)(x-2)$

Factoring Difference of Squares

Difference of squares are of the form $x^{2}-y^{2}$. They factor to $(x+y)(x-y)$.
a) $x^{2}-16$
b) $25 x^{2}-4$
$=(x+4)(x-4)$
$=(5 x-2)(5 x+2)$
c) $64-y^{2}$
d) $100 x^{2}-121 y^{2}$

$=(10 x+11 y)(10 x-11 y)$

COMBINING IT ALL TOGETHER

Always try to common factor first.
Then look to simple trinomial factor or factor as a difference of squares.
a) $7 x^{2}-14 x-21$
$=7\left(x^{2}-2 x-3\right)$
b) $3 x^{2}-75$
$=3\left(x^{2}-25\right)$
$=7(x-3)(x+1)$
$=3(x+5)(x-5)$

Factoring Flow Chart (2P)

Homework:

$$
\begin{array}{r}
\text { Page } 312 \text { \#2-7, 10, } \\
11,12,15,16
\end{array}
$$

+ Practice Test

