Jan 19,2017 MFM 2PI

Unit #4 - Algebraic Expressions Lesson #6 - Review

Multiply Two Binomials

Multiply everything in the first bracket by everything in the second bracket.

$$(5x-6)(2x+3)$$
= $10x^2 + 15x - 12x - 18$
= $10x^2 + 3x - 18$

Common Factoring

Look for the greatest common factor (GCF) that divides evenly into all the terms.

$$6x + 3x^{2} - 9x^{3}$$

$$= 3x \left(\frac{6x}{3x} + \frac{3x^{2}}{3x} - \frac{9x^{3}}{3x}\right) = 3x \left(2 + x - 3x^{2}\right)$$

$$= 3x \left(2 + x - 3x^{2}\right)$$

$$= 3x \left(2 + x - 3x^{2}\right)$$

$$= 3x^{2}$$

Factoring Trinomials

Simple trinomials are of the form $x^2 + bx + c$. Determine the two numbers that multiply to make c and add to make b.

a)
$$x^2 - 7x + 10$$
 b) $x^2 + 13x - 30$ = $(\chi - 5)(\chi - 2)$

b)
$$x^2 + 13x - 30$$

= $(\chi + 15)(\chi - 2)$

Factoring Difference of Squares

Difference of squares are of the form $x^2 - y^2$. They factor to (x+y)(x-y).

a)
$$x^2 - 16$$
 = $(x + 4)(x - 4)$

a)
$$x^2 - 16$$

b) $25x^2 - 4$
 $= (x+4)(x-4)$
 $= (5x-2)(5x+2)$

c)
$$64 - y^2$$
 $= (8 - y)(8 + y)$

c)
$$64 - y^2$$
 d) $100x^2 - 121y^2$ = $(8 - y)(8 + y)$ = $(10x + 11y)(10x - 11y)$

COMBINING IT ALL TOGETHER

Always try to common factor first.

Then look to simple trinomial factor or factor as a difference of squares.

a)
$$7x^2 - 14x - 21$$

 $= 7(x^2 - 2x - 3)$
 $= 7(x - 3)(x + 1)$
b) $3x^2 - 75$
 $= 3(x^2 - 25)$
 $= 3(x + 5)(x - 6)$

b)
$$3x^2 - 75$$

= $3(\chi^2 - 25)$
= $3(\chi + 5)(\chi - 5)$

Factoring Flow Chart (2P)

Homework:

Page 312 #2-7, 10, 11, 12, 15,16

+ Practice Test

