Warm Up:
Ex. 1 Find the length of $B C$ to the nearest tenth or a metre.

Have: Hyp $=12.2$
Need: adJ

$$
\text { Use: } \cos \theta=\frac{A}{H}
$$

Solution: $\frac{\cos 33}{18}=\frac{x}{12.2}$

$$
x=10.2 \mathrm{~m}
$$

Ex. 2 Find the measure of angle D, to the nearest degree.

Have: opp $=1.5$
ars=2.1
Need: angle D
Solution:

Use:

$$
\operatorname{Tan} \theta=\frac{0}{A}
$$

$$
\overrightarrow{T o n D}=0.7143
$$

$$
D=\operatorname{Tan}^{-1} 0.7143
$$

$$
D=33.5
$$

$$
D=36^{\circ}
$$

To talk about angles we need to have a reference point.
Sometimes we use an \qquad angle of elevation

The angle of elevation is the angle of view \qquad from the horizontal up to the object being viewed.

Ex. 3 You are standing 11.2 m from the wall of the school. The angle of elevation from where you are standing to the top of the school is 37°. Find the height of the school.

Have: angle 37. $\operatorname{ad} 5=11.2$
Need: opp
use: $\operatorname{Tan} \theta=\frac{0}{A}$
\therefore the height

$$
\frac{\operatorname{Tan} 37}{16}=\frac{x}{11.2}
$$

of the school
is 8.4 m

$$
x=11.2 \operatorname{Tan} 37^{\circ}
$$

$$
x=8.4
$$

Ex. 4 A truck travels 6 km up a mountain road. The change in height is 0.375 km . What is the measure of the angle of elevation?

Have: Hyp 6
opp 0.375

$$
\sin x=\frac{0.375}{6}
$$

Need: angle x

$$
\sin x=.0625
$$

use: $\sin \theta=\frac{0}{H}$

$$
\begin{aligned}
& x=\sin ^{-1} 0.0625 \\
& x=3.5
\end{aligned}
$$

to the angle of elevation is 4°

Ex. 5
The angle of elevation from the swimmer to the lifeguard is 35 and the lifeguard sits 6 ft off the ground.

a) Find the distance x from the swimmer to the base of the lifeguard chair.

Have: angle 35°

$$
O P P=6
$$

$$
\begin{aligned}
& \frac{\operatorname{Tan} 35^{\circ}}{1}=\frac{6}{x} \\
& \frac{x \operatorname{Tan} 35^{\circ}}{\operatorname{Tan} 35^{\circ}}=\frac{6}{\operatorname{Tan} 35^{\circ}} \\
& x=8.6 \mathrm{ft}
\end{aligned}
$$

Need: adJ
Use: $\operatorname{Tan} \theta=\frac{0}{A}$
b) Find the distance y from the swimmer to the lifeguard.

Have: angl 35°
opp $=6$
Need: Hyp
use: $\sin \theta=\frac{O}{H}$

$$
\begin{aligned}
& \frac{\sin 35}{1}=\frac{6}{y} \\
& \frac{y \sin 35}{\sin 35}=\frac{6}{\sin 35} \\
& y=\frac{6}{\sin 35} \\
& y=\frac{6}{0.5735} \\
& y=10.5 f t
\end{aligned}
$$

