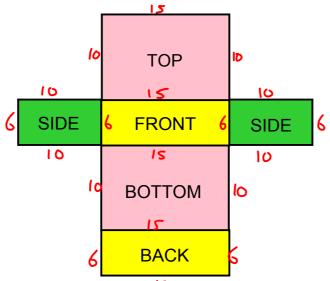

SURFACE AREA OF PRISMS


Recall:

A prism is a <u>three-dimensional</u>object with <u>two</u> parallel, <u>congruent</u> polygonal bases. A prism is named by the shape of the <u>base</u>.

A <u>net</u> is a <u>two-dimensional</u> <u>drawing</u> of what a three-dimensional solid would look like if it were taken apart and laid out.

1. Sketch a net of the prism and label each surface with its dimensions.

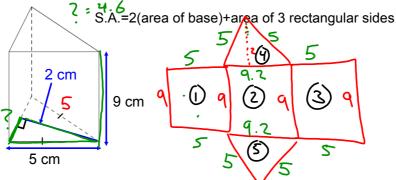
2. Which measurements are the same? Is this true for all rectangular prisms or just this one? top=bottom

side=side

front=back

Yes, this will always happen for all rectangular prisms.

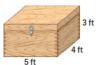
3. Find the surface area of each section.


Top: A=Ixw A=10x15=150	Bottom: A=150
Front: A = 6x15 = 90	Back: A=90
Side: A = 6× 10 = 60	Side: A = 60

4. Add all of the sections together to find the total surface area of the box.

5. Write a formula for finding the total surface area of the rectangular prism.

$$2^{2} + \frac{7}{2} = 5^{2}$$
 $4 + \frac{7}{2} = 25$


6. a) If the box had a triangular base, how would you find the total surface area?

b) Calculate the total surface area given the dimensions? 5.A. #2 = 9.2 × 9

$$5.4.1+3 = 9 \times 5 \times 2$$

= 90 cm²
 $5.4.4+5 = \frac{9.2 \times 2}{2} \times 2$ Total SA.
= 18.4 cm² = 90 + 82.8 + 18.4
= 191.2 cm²

7. You are building a storage box made out of plywood using the dimensions shown. Plywood costs \$1.50/ft². Find the total cost of the plywood.

