Mon.Feb 13,2017 Unit 5: Quadratic Relations Day 7: The Quadratic Relationship $y=ax^2+c$

Today we will...

1. Relate the graph of $y=ax^2 + c$ to the parts of a parabola.

Example 1: Find the Maximum or Minimum

Using Desmos, find the coordinates of the maximum or minimum of each of the following graphs.

(a)	$y = 3x^2$	Maximum or <u>minimum</u> Value:
(b)	$y = x^2 - 9$	Maximum or minimum Value:
(C)	$y = -2x^2 + 32$	Maximum or minimum Value: <u>32</u>

In <i>y</i> = ax ² + c, <u>C</u>	represents the maximum	r
minimum	represents the <u>maximum</u> o value. This is also the <u>verkx:</u>	<u>0,(</u>)

Recall: Given a quadratic equation of the form $y = ax^2$, describe the effect of a on the graph of $y = x^2$.

- if a is negative, the graph.... opens down

if a is between 0 and 1 (ie. decimal or fraction), the graph... is wider and flatter
compressed
if a is greater than 1, the graph...
is taller and skinnicl
Stretched

Example 2: Narrowest to Widest

Without graphing, order the parabolas in each set from narrowest to widest.

(a) $y = \frac{1}{3}x^2 - 7$ $y = \frac{1}{3}x^2 - 7$ $y = \frac{1}{3}x^2 - 7$ $\gamma = 3x^2 - 7$ $\gamma = \frac{1}{3}x^2 - 7$ $\gamma = 3x^2 - 7$ $\gamma = \frac{1}{3}x^2 - 7$

(b)
$$y = -4x^2 - 7$$
 $y = -\frac{1}{2}x^2 - 7$ $y = -0.75x^2 - 7$
 $y = -0.75x^2 - 7$
 $y = -\frac{1}{2}x^2 - 7$

Example 2: Interpret the Zeros of a Quadratic Relation

This building contains the equipment that pumps water from Lake Ontario to the Woodward Avenue Water Treatment Facility. A crosssection of the building is in the shape of a parabola.

It's shape can be modelled by the quadratic relation

 $h = -0.45w^2 + 18$, where hrepresents the height in metres and w represents the horizontal distance in metres.

(a) Use Desmos to graph the relation. $\gamma = -0.45 \times^2 + 18$ (b) Find the height of the building.

(c) Find the width of the building at ground level.

6.325+6.325=12.650 m

Homework: Section 8.3 Homework