Mon. Feb 13,2017
Unit 5: Quadratic Relations
Day 7: The Quadratic Relationship
$y=a x^{2}+c$

Today we will...

1. Relate the graph of $y=a x^{2}+c$ to the parts of a parabola.

Example 1: Find the Maximum or Minimum

Using Desmos, find the coordinates of the maximum or minimum of each of the following graphs.
(a) $y=3 x^{2}$

Maximum or minimum
Value: Q
(b) $y=x^{2}-9$

Maximum or minimum
Value: -9
(c) $y=-2 x^{2}+32$

Maximum or minimum
Value: 32
$\ln y=a x^{2}+c, C$ represents the maximum or minimum value. This is also the vertex: $(0,0)$

Recall: Given a quadratic equation of the form $y=a x^{2}$, describe the effect of a on the graph of $y=x^{2}$.

- if a is negative, the graph.... opens down
- if a is between 0 and 1 (ie. decimal or fraction), the graph... is wider and flatter

$$
\rightarrow \text { compressed }
$$

- if a is greater than 1 , the graph...
is taller and skinnier
\rightarrow stretched
Example 2: Narrowest to Widest
Without graphing, order the parabolas in each set from narrowest to widest.
(a)

$$
\begin{array}{ll}
y=\frac{1}{3} x^{2}-7 & \underline{-} \\
y=3 x-7 & ; \quad y=x^{2}-7 ;
\end{array} \quad y=\frac{3}{3} x^{2}-7
$$

(b)

$$
\begin{array}{lll}
y=-4 x^{2}-7 & y=-\frac{1}{2} x^{2}-7 & y=-0.75 x^{2}-7 \\
y=-4 x^{2}-7 ; & y=-0.75 x^{2}-7 ; & y=-\frac{1}{2} x^{2}-7
\end{array}
$$

Example 2: Interpret the Zeros of a Quadratic Relation

This building contains the equipment that pumps water from Lake Ontario to the Woodward Avenue Water Treatment Facility. A crosssection of the building is in the shape of a parabola.

It's shape can be modelled by the quadratic relation $h=-0.45 w^{2}+18$, where h represents the height in metres and w represents the horizontal distance in metres.

(a) Use Desmos to graph the relation. $\quad y=-0.45 x^{2}+18$
(b) Find the height of the building.

(c) Find the width of the building at ground level.

$$
6.325+6.325=12.650 \mathrm{~m}
$$

Homework:

Section 8.3 Homework

