Unit 5: Quadratic Relations Day 3: Key Features of Quadratic Relations

Today we will...

1. Learn how to identify each of the key points on a parabola.

Investigation 1

In Desmos, graph the following four equations on the same grid.

1. $y=x^{2}$
2. $y=2 x^{2}$
3. $y=3 x^{2}$
4. $y=4 x^{2}$

Answer the following questions:
(a) How did each parabola compare to the previous parabola? \rightarrow the higher the coeffccent of x^{2}, the taller and skinnier the parabola
(b) Sketch the four parabolas on the grid below. Label each parabola with its equation.

Investigation 2

Clear your previous equations and graph the following four equations on the same grid.

1. $y=x^{2}$
2. $y=0.5 x^{2}$
3. $y=0.25 x^{2}$
4. $y=0.2 x^{2}$

Answer the following questions:
(a) How did each parabola compare to the previous parabola?
\rightarrow the smaller the clecimal, the flatter and wider the parabola
(b) Sketch the four parabolas on the grid below. Label each parabola with its equation.

Investigation 3

Clear your equations. In Desmos, graph the following four equations on the same grid.

1. $y=-x^{2}$
2. $y=-2 x^{2}$
3. $y=-4 x^{2}$
4. $y=-(0.5) x^{2}$
5. $y=-(1 / 3) x^{2}$

Answer the following questions:
(a) How did each parabola compare to the previous parabola? \rightarrow negative sign makesthe parabola open down \rightarrow numbers layger than 1 stretch the parabola (taller, Skinnier) \rightarrow fractions less than 1, compress the parabcia (wider, flater)
(b) Sketch the five parabolas on the grid below. Label each parabola with its equation.

Reflect: Given a quadratic equation of the form $y=a x^{2}$, describe the effect of a on the graph of $y=x^{2}$.

- if a is negative, the graph.... opens down

- if a is between 0 and 1 (ie. decimal or fraction), the graph... is compressed (wider, flatter)
- if a is greater than 1, the graph... is stretchod (taller, skinnier)
The Key Features of a Parabola

- the greatest/
least y-value on the graph
- the y-value at the vertex

Example 1

Identify the following for the quadratic relation shown:
(a) the coordinates of the vertex

$$
(x, y)=(-1,-4)
$$

(b) the equation of the axis of symmetry

$$
x=-1
$$

(c) the y-intercept

$$
(0,-3)
$$

(d) the maximum or minimum value .
minimum of -4
(e) the x-intercepts

$$
-3 \text { and } 1
$$

Example 2

A quadratic relation is given by the equation $y=2 x^{2}-4 x+6$.
(a) Use Desmos to graph the equation.
(b) Identify the maximum or minimum value and the coordinates of the vertex.
 vertex: $(1,4)$
(c) Write the equation of the axis of symmetry.

$$
x=1
$$

(d) Identify the y-intercept.

$$
6
$$

(e) Identify the x-intercepts. there are none

Homework:

Section 6.3 Handout

Note: When the homework says "use a graphing calculator", you are to use DESMOS

