Example 1: Find the Maximum or Minimum

Using Desmos, find the coordinates of the maximum or minimum of each of the following graphs.

(a)	$y = 3x^2$	Maximum or minimum	Value:
(b)	$y = x^2 - 9$	Maximum or minimum	Value:
(c)	$y = -2x^2 + 32$	Maximum or minimum	Value:

Recall:

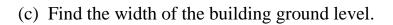
Given a quadratic equation of the form $y = ax^2$, describe the effect of a on the graph of $y = x^2$. - if *a* is negative, the graph....

- if *a* is between 0 and 1 (ie. decimal or fraction), the graph...

- if *a* is greater than 1, the graph...

Example 2: Narrowest to Widest

Without graphing, order the parabolas in each set from narrowest to widest.


(a) $\mathbb{P} = \frac{1}{3}\mathbb{P}^2 - 7$ $\mathbb{P} = \mathbb{P}^2 - 7$ $\mathbb{P} = 3\mathbb{P}^2 - 7$

(b)
$$2 = -42^2 - 7$$
 $2 = -\frac{1}{2}2^2 - 7$ $2 = -0.752^2 - 7$

Example 2: Interpret the Zeros of a Quadratic Relation

This building contains the equipment that pumps water from Lake Ontario to the Woodward Avenue Water Treatment Facility. A cross-section of the building is in the shape of a parabola. It's shape can be modelled by the quadratic relation $h = -0.45w^2 + 18$, where *h* represents the height in metres and *w* represents the horizontal distance in metres.

- (a) Use Desmos to graph the relation.
- (b) Find the height of the building.

Homework: Section 8.3 Handout