Example 1: Find the Maximum or Minimum
Using Desmos, find the coordinates of the maximum or minimum of each of the following graphs.
(a) $y=3 x^{2}$

Maximum or minimum

Maximum or minimum
Value: \qquad
(b) $y=x^{2}-9$

Value: \qquad
(c) $y=-2 x^{2}+32$

Maximum or minimum
Value: \qquad

Recall:
Given a quadratic equation of the form $y=a x^{2}$, describe the effect of a on the graph of $y=x^{2}$.

- if a is negative, the graph....
- if a is between 0 and 1 (ie. decimal or fraction), the graph...
- if a is greater than 1, the graph...

Example 2: Narrowest to Widest
Without graphing, order the parabolas in each set from narrowest to widest.
(a) $0=\frac{1}{3} \square^{2}-7$
T $=\square^{2}-7$
T- $=30^{2}-7$
(b) $0=-4 \square^{2}-7$
$0=-\frac{1}{2} \square^{2}-7$
T $=-0.75 \square^{2}-7$

Example 2: Interpret the Zeros of a Quadratic Relation
This building contains the equipment that pumps water from Lake Ontario to the Woodward Avenue Water Treatment Facility. A cross-section of the building is in the shape of a parabola. It's shape can be modelled by the quadratic relation $h=-0.45 w^{2}+18$, where h represents the height in metres and w represents the horizontal distance in metres.
(a) Use Desmos to graph the relation.

(b) Find the height of the building.
(c) Find the width of the building ground level.

