	Examp	ole	1:	Analy	yze a	a Ç)uadratic	Ec	quation
--	-------	-----	----	-------	-------	-----	-----------	----	---------

Given the quadratic relation $y = x^2 + 2x - 15$

- (a) Does the relation have a maximum or a minimum?
- (b) What is the *y*-intercept?
- (c) Factor the expression.

- (d) Graph the both the standard form and factored form of the equations in Desmos. What do you notice?
- (e) From the graph, what are the *x*-intercepts?
- (f) What do you notice about the answers in (d) and (e)?

For a quadratic in standard form, $y = ax^2 + bx + c$, the y-intercept is _____

For a quadratic in factored form, y = a(x - r)(x - s), the x-intercepts are _____ and ____.

If *a* is positive, the parabola opens ______

If *a* is negative, the parabola opens ______

Example 2: Interpret a Quadratic Equation.

The curve formed by a rope bridge can be modelled by the relation $y = x^2 - 11x + 10$, where x is the horizontal distance in metres and y is the height in metres.

- (a) What is the relation in factored form?
- (b) What are the zeros of the relation?

- (c) What is the horizontal distance from one end of the bridge to the other?
- (d) Put the equation in standard form into Desmos to check your answers.

Homework: Section 8.2 Handout

Hints for homework:

- 4. (a) Rearrange the expression and common factor out a (-x).
 - (b) Use x values from 1 to 9 and substitute into the given formula.
 - (c) Use the table of values created in (b)
- 5. (b) Expand your expression for area.
 - (c) Graph your expression using Desmos and find the maximum area.
- 6. Graph the expression in Desmos first and then answer the questions.
- 7. (a) Graph the expression in Desmos to find the intercepts.
 - (b) Use distances 0 to 8 m in the table and calculate the height.
 - (c) and (d) Use the graph to answer the questions.