Recap the factoring methods we have done so far this unit:

1. Common Factoring:

Factor the following.
a) $9 x+6$
b) $6 x^{4} y^{3}-2 x y^{6}+8 x^{3} y^{2}$
2. Trinomial Factoring:

$$
x^{2}+b x+c
$$

Factor the following.
a) $x^{2}-4 x+3$
b) $x^{2}+3 x-18$

Lesson \#4 Factoring Difference of Squares
What happens when we don't have a middle term?
Ex 1) Factor: $w^{2}-25$

Notice! w^{2} and 25 are perfect squares.
This is the same as: $w^{2}+0 w-25$
\qquad x \qquad
\qquad

Ex 2) Factor: $y^{2}-16$
Notice! y^{2} and 16 are perfect squares.
\qquad x \qquad
$+{ }^{+}+$

Ex 3) Expand $(2 x+7)(2 x-7)$

Notice! $4 x^{2}$ and 49 are perfect squares.

$$
\begin{gathered}
4 x^{2}-49 \\
\square^{\mathrm{x}}+\square= \\
= \\
=
\end{gathered}
$$

In general...
To factor a difference of squares

Examples

a) $w^{2}-36$
b) $n^{2}-64$
c) $9 k^{2}-16$
d) $4 c^{2}-25$
**Remember always to common factor FIRST if you can!!
e) $5 y^{2}-80$
f) $6 m^{2}-54$

