## Sept 22,2016

# Unit 1: Linear Equations Day 6: Isolating a Variable/ Working with Formulas 

Today we will....

1. Learn how to write an equation with one variable in terms of another.
2. Learn how to rearrange a formula to solve for the variable needed.

The ability to rearrange formulas or rewrite them in different ways is a very important skill.

Because formulas are just equations, all of the same principles of rearranging equations apply to rearranging formulas.

Ex. 1 Solve each of the formulas for the variable indicated.
1 a)
a) $-12 y=3 x-a$ for $a \rightarrow$ want $a=$ $\qquad$

$$
\begin{aligned}
\frac{-12 y-3 x}{-1} & =\frac{-a}{-1} \\
12 y+3 x & =a \\
a & =12 y+3 x
\end{aligned} \quad \begin{array}{ll}
x & =3 \\
&
\end{array}
$$

b)

$$
\begin{gathered}
P=2 l+2 w \quad \text { for } w \\
\frac{P-2 l}{2}=\frac{2 w}{2} \\
\frac{P}{2}-l=W \\
W=\frac{P}{2}-l
\end{gathered}
$$

c) $V=\frac{1}{3} \ell \mathbf{w h}$ for $h \quad \rightarrow h=\ldots \ldots$

$$
\begin{aligned}
3(v) & =3\left(\frac{1}{3} l w h\right) \\
\frac{3 v}{l w} & =\frac{\operatorname{lw} h}{l w} \\
\frac{3 v}{l w} & =h \\
h & =\frac{3 v}{l w}
\end{aligned}
$$

Example 2.
The total cost of a restaurant meal can be modeled using the formula: $C=m+0.08 m+0.05 m+0.15 m$ where $C$ is the total cost in dollars, $m$ is the total menu price of food in dollars, 0.08 is the PST rate, 0.05 is the GST rate and 0.15 is the tip rate.

凹 C
Find the total menu price when the total cost is $\$ 17.60$.

$$
\begin{aligned}
& C=m+0.08 m+0.05 m+0.15 m \\
& \frac{C}{1.28}=\frac{1.28 m}{1.28} \\
& m=\frac{C}{1.28} \\
& m=\frac{17.60}{1.28} \\
& m=13.15
\end{aligned}
$$

- The menu price is ${ }^{\$ / 3.75}$

Ex. 3 The formula $F=\frac{9}{5} C+32$ relates temperature measured in degrees Fahrenheit, $F$, to temperature measured in degrees Celsius, $C$.
a) What temperature in degrees Fahrenheit is equivalent to $15^{\circ} \mathrm{C}$ ?

$$
\begin{aligned}
& F=\frac{9}{F}(3 \\
& \left.F=9(3)^{1}\right)+32 \\
& F=27+32
\end{aligned}
$$

b) Rearrange the formula $F=\frac{9}{5} C+32$ to solve for $C$. Use this formula to find the temperature in degrees Celsius that is equivalent t $86^{\circ} \mathrm{F}$.

$$
\begin{aligned}
& F= \frac{9}{5} C+32 \\
& 5(F)=5\left(\frac{9}{5} C\right)+5(32) \\
& 5 F=9 C+160 \\
& \frac{5 F}{9}-\frac{160}{9}=\frac{9 C}{9} \\
& C=\frac{5}{9} F-\frac{160}{9} \\
& C=\frac{5}{9}(86)-\frac{160}{9} \\
& C \text { calculator! } \\
& C=47.8-17.8 \\
& C=30^{\circ}
\end{aligned}
$$

# Homework: <br> Page 180 \#1, 2, 3, 4, 6 

