Unit 1: Linear Equations

Day 4: Equations with Brackets

Today we will...

1. Learn how to solve a linear equation that has variables on both sides of the equation.
2. Review expanding brackets.
3. Learn how to expand brackets to solve linear equations

Solving Equations with more than
One Variable
Example 1: Solve the following:
a) $2 x^{-x}+5=6+x^{-x}$

$$
\begin{aligned}
2 x-x+5 & =6 \\
x+5^{-5} & =6^{-5} \\
x & =6-5 \\
x & =1
\end{aligned}
$$

b) $7-5 x^{-2 x}=2 x^{-2 x}-14$

$$
\begin{aligned}
7-5 x-2 x & =-14 \\
7-7 x & =-14 \\
-7 x & =-14-7 \\
\frac{-7 x}{-7} & =\frac{-21}{-7} \\
x & =3
\end{aligned}
$$

Solving Equations with Brackets
Review: Expand the following.
a) $3(x+2)$
b) $5(-x+1)$
c) $-4(k-1)$
$=3 x+6$
$=-5 x+5$

$$
=-4 k+4
$$

Example 1: Solve the following and check by substitution:

$$
\text { a) } \begin{aligned}
2(x+9) & =16 \\
2 x+18^{-18} & =16^{-18} \\
2 x & =16-18 \\
\frac{2 x}{2} & =\frac{-2}{2} \\
x & =-1
\end{aligned}
$$

\square

If $L S=R S$, the Value for x works

Since $L S=R S$,

$$
\therefore x=-1
$$

Example 2: Solve the following equations.

$$
\begin{gathered}
4(k-3)=6-1(2 k-6) \\
4 k-12=6-2 k+6 \\
4 k-12=-2 k+2 k+12 \\
4 k+2 k-12=12 \\
6 k-12^{+12}=12+12 \\
6 k=12+12 \\
\frac{6 k}{6}=\frac{24}{6} \\
k=4
\end{gathered}
$$

b)

$$
\begin{aligned}
2(x+7) & =4 \\
2 x+14 & =4^{-14} \\
2 x & =4-14 \\
\frac{2 x}{2} & =\frac{-10}{2} \\
x & =-5
\end{aligned}
$$

c)

$$
\begin{aligned}
3(2 x-1)-2(x+1) & =5 \\
6 x-3-2 x-2 & =5 \\
6 x-2 x-3-2 & =5 \\
4 x-5^{+5} & =5 \\
4 x & =5+5 \\
\frac{4 x}{4} & =\frac{10}{4} \\
x & =\frac{10}{4}=\frac{5}{2}=2.5
\end{aligned}
$$

Step 1: Eliminate the brackets

Step 2: Collect Like Terms

Step 3: Solve for k

