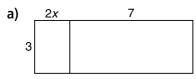
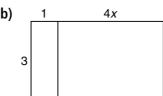
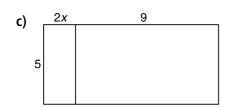
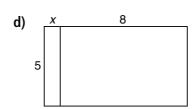
Practice

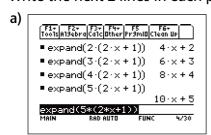

1. Write the product modelled by each set of tiles. Determine the product.

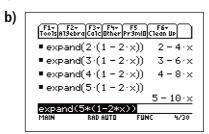






- 2. Use algebra tiles to determine each product. Sketch the tiles you used.
 - a) 2(4x + 1)
- **b)** 2(3x + 1)
- c) 5(2x + 3)
- d) 4(4x + 3)
- **3.** Write the product modelled by each figure. Determine the product.





4. Use the calculator screens below. What patterns do you see? Explain each pattern. Write the next 2 lines in each pattern.

We can also use paper and pencil to expand a product.

Example

Expand:
$$-3(-2x^2 + 3x - 4)$$

Solution $-3(-2x^2 + 3x - 4)$

$$-3(-2x^2+3x-4)$$

Multiply each term in the brackets by -3.

$$-3(-2x^{2} + 3x - 4) = (-3)(-2x^{2}) + (-3)(3x) + (-3)(-4)$$

$$= (+6x^{2}) + (-9x) + (+12)$$

$$= 6x^{2} - 9x + 12$$

5. Expand: $-100(4x^2 + x - 4)$

Visualize algebra tiles. Are they useful to determine this product? Explain.

6. Jessica expands $3(x^2 + 4x - 2)$ and gets $3x^2 + 4x - 2$. Choose a tool.

Use the tool to explain why Jessica's answer is incorrect.

7. Multiply.

a)
$$7(3x - 1)$$

b)
$$3(4x - 5)$$

c)
$$2(6x-4)$$

d)
$$5(5x^2 - 3x)$$

e)
$$4(-2x^2+3)$$

f)
$$9(x^2 + x - 6)$$

8. Expand.

a)
$$-2(4x + 2)$$

b)
$$3(-5x^2+3)$$

c)
$$2(-x-4)$$

d)
$$-7(x^2-5)$$

b)
$$3(-5x^2 + 3)$$

e) $-2(-5x^2 + x)$

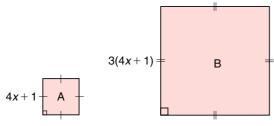
f)
$$6(3-2x)$$

9. Assessment Focus Multiply. Which tools did you use? Explain.

a)
$$-2(x^2-2x+4)$$

a)
$$-2(x^2-2x+4)$$
 b) $-3(-x^2+3x-7)$ c) $2(4x^3-2x^2-x)$

c)
$$2(4x^3 - 2x^2 - x)$$


d)
$$8(3x^3 + 2x^2 - 3)$$

d)
$$8(3x^3 + 2x^2 - 3)$$
 e) $-6(2x^2 - x + 5)$

f)
$$4(x^2 - 3x - 3)$$

10. Square A has side length 4x + 1.

Square B has side length that is 3 times as great as that of Square A.

- a) Write an expression for the perimeter of each square. Simplify each expression.
- b) What is the difference in perimeters?
- **11.** Take It Further Explain how you could use algebra tiles to multiply a polynomial by a negative constant term. Illustrate with an example.

In Your Own Words

When can you use algebra tiles to determine the product of a constant term and a polynomial?

When do you use paper and pencil?

Include examples in your explanation.