# **Adding and Subtracting Fractions**

### A. Common Denominators

I. When adding or subtracting fractions, it is essential that we have a common denominator. Why? Adding fractions involves taking a certain number of items (the numerator) of a certain size (the denominator) and doing an "inventory". We can only add/subtract items that are the same size, and they are only the same size if they have the same denominator!!

**Example**: If I have 1 eighth, and Ashlee has 2 eighths, then together we have 3 eighths.

$$\frac{1}{8} + \frac{2}{8} = \frac{3}{8}$$

Because the items are the **same size** (i.e. **same denominator**), we are allowed to add them together.

### II. What if the denominators are different?

We can make a common denominator by creating equivalent fractions!

**Example:** If I have 1 third, and Ben has 1 sixth, then we can't say that we have 2 "thirixths" or 2 "sixirds".

We can't add our pieces together unless they are the same size! We need to make equivalent fractions! *Remember*: when making equivalent fractions, what you do to the numerator, you must do to the denominator!

$$\frac{1}{3}$$
 +  $\frac{1}{6}$  =

#### B. Adding and subtracting fractions

- 1. Convert all mixed numbers to improper fractions and give all whole numbers a denominator of 1
- 2. Create a common denominator by multiplying numerators and denominators by the same value to make equivalent fractions
- 3. Add or subtract numerators, and keep the common denominator
- 4. Reduce the final answer to lowest terms

# **Examples:**

a. 
$$\frac{4}{9} + \frac{1}{9}$$
 b.  $\frac{3}{5} - \frac{4}{5}$  c.  $12 - \frac{4}{3}$ 

b. 
$$\frac{3}{5} - \frac{4}{5}$$

c. 
$$12 - \frac{4}{3}$$

d. 
$$-\frac{7}{8} + \left(\frac{3}{4}\right)$$
 e.  $-3 - 1\frac{2}{3}$  f.  $\frac{5}{7} + \frac{9}{21}$ 

e. 
$$-3-1\frac{2}{3}$$

$$\frac{5}{7} + \frac{9}{21}$$

g. 
$$\frac{1}{2} + \frac{5}{6} + \frac{4}{18}$$
 h.  $3\frac{2}{3} - \left(-\frac{3}{4}\right)$ 

h. 
$$3\frac{2}{3} - \left(-\frac{3}{4}\right)$$