you tube link

$$
\begin{aligned}
& h=2 r \\
& V_{\text {cylinder }}=\pi r^{2} h \\
& =\pi r^{2}(2 r) \\
& =2 \pi r^{3}
\end{aligned}
$$

Conclusion:

The Sphere fills $2 / 3$ of the cylinder with the same diameter.

So, sphere is $2 / 3$ of the volume of the cylinder.

$$
\begin{aligned}
V_{\text {sphere }} & =\frac{2}{3} V_{\text {cylinder }} \\
& =\frac{2}{3}\left(2 \pi r^{3}\right) \\
& =\frac{4}{3} \pi r^{3}
\end{aligned}
$$

Volume of a Sphere: $V=\frac{4 \pi r^{3}}{3}$ or $V=\frac{4}{3} \pi r^{3}$
Example 1: A spherical piñata has a diameter of 22 cm One litre of candy weighs one kilogram and candy costs $\$ 0.79 / 100 \mathrm{~g}$. How much will it cost to fill the piñata don't forget to include 13% taxes. (recall: $1 \mathrm{~cm}^{3}=1 \mathrm{~mL}$)
(3) $V=\frac{4 \pi r^{3}}{3}$

$$
\begin{aligned}
& V=\frac{4(3.14)\left(11^{3}\right)}{3} \\
& V=\frac{(4)(3.14)(1331)}{3} \\
& V=5572.4 \mathrm{~cm}^{3} \\
& V=5572.4 \mathrm{~mL} \quad \mid \mathrm{L}=1000 \mathrm{~mL} \\
& V=5.5724 \mathrm{~L} \quad \quad 1000 \mathrm{~g}=1 \mathrm{~kg} \\
& 5.5724 \mathrm{~kg} \quad \\
& 5572.4 \mathrm{~g} \\
& C=55.724 \times .79 \\
& C=44.02 \times 1.13 \quad \text { tax.s } \\
& C=49.74 \quad \\
& \therefore \text { it will cost you \$ } 49.74 \text { to } \\
& \text { fill this pinato }
\end{aligned}
$$

Example 2: The radius of a sphere is tripled. How does this affect the volume of the sphere? Explain.

$$
V=\frac{4 \pi r^{3}}{3}
$$

Since we ar working with the exponent 3 it will actually change it by multiplying by 27

$$
\begin{aligned}
& \frac{4 \pi r^{3}}{3}
\end{aligned} \quad \frac{4 \pi(3 r)^{3}}{3}
$$

Example 3: A spherical gemstone just fits inside a plastic cube with edges 10 cm .
a) Calculate the volume of the gemstone, to the nearest cubic centimetre. $r=5$

$$
\begin{aligned}
& V=\frac{4 \pi r^{3}}{3} \\
& V=\frac{4(3.14)\left(\mathrm{s}^{3}\right)}{3}
\end{aligned} \quad \begin{aligned}
& V=\frac{4(3.14)(125)}{3} \\
& V=523.3 \mathrm{~cm}^{3}
\end{aligned}
$$

b) How much empty space is in the cube when the gemstone is inside?

$$
\begin{aligned}
V & =I \times w \times h \\
V & =10 \times 10 \times 10 \\
V & =1000 \mathrm{~cm}^{3} \\
\text { Empty space } & =1000.523 .3 \\
& =476.7 \mathrm{~cm}^{3}
\end{aligned}
$$

