A cone is a three dimensional solid with a circular base. The lateral surface is curved and extends from the base to a point called the vertex.


Developing a formula for surface area of a cone:
The lateral surface is a circle-sector.
This sector is some fraction (one $\mathrm{n}^{\text {th }}$ ) of a circle with radius s.


The circumference of the sector is one $n^{\text {th }}$ of the circumference
the whole circle with radius s.
$c_{\text {sector }}=\frac{1}{n}(2 \pi s)$
Since the circumference of the sector wraps around the
circumference of the base (which is a circle with radius $r$ ).


So, the formula for Surface area of a cone is:
$A_{\text {total }}=A_{\text {base }}+A_{\text {lateral side }}$

$$
=\pi r^{2}+\pi r s
$$

## Example 1:

Calculate the surface area of a paper cone (before it is filled with french fries) with height 4.2 cm and radius 1.8 cm.
** Note:


## Example 2:

The slant height of a cone is tripled. Does this triple the surface area of the cone? Explain.

## Example 3:

A cone is formed from a circle with a $90^{\circ}$ sector removed. Another cone is formed from a semicircle with the same radius. How do the two cones differ? How are they the same?

Example 4: The lateral area of a cone with slant height 14 cm is $132 \mathrm{~cm}^{2}$.
a) Find the radius of the cone, to the nearest cm .
b) Find the height of the cone, to the nearest cm .

## Example 5:

An old construction pylon needs to be painted. The base the pylon sits on is 20 cm by 20 cm by 1.5 cm , the radius of the cone is 8 cm and the height of the pylon is 31 cm . If only the part that shows is to be painted, find the surface area to be painted. (Round to 1 decimal place).


