Part A - Match the following names by dragging each name to with the correct shape:

A. Rectangular Based Prism

I. Cylinder
H. Cone

J. Square Based Prism
C. Pentagon Based Prism

F. Square Based Pyramid
G. Hexagonal Based Pyramid

E. Sphere

D. Triangular Based Prism

Polyhedron: A three-dimensional object with faces that are polygons.
Prism: A prism is a three-dimensional solid (a polyhedron).
The top and bottom (the bases) are parallel, identical polygons.

The lateral faces are rectangles; they meet the bases at right angles.
A prism is named by the shape of its bases, for example, rectangular prism, triangular prism

Volume of any Prism:

Surface Area:

$V=A_{\text {base }} \times$ height

$$
A_{\text {total }}=2 \times A_{\text {base }}+A_{\text {rectangles }}
$$

Pyramid:

A pyramid is a three-dimensional solid (a polyhedron) with a polygon-shaped base. The remaining sides are triangles that come to a point at the top.

Surface Area:

$A_{\text {total }}=A_{\text {base }}+A_{\text {triangles }}$

Note: Height (vertical) is measured from the center of the base to the point of the pyramid, not to be confused with the slant height.

Example 1: Calculate the volume and the surface area of the following triangular-based prism.

Example 2: Calculate the volume of the following squarebased pyramid.

Example 3: Calculate the surface area of the pyramid in example 2.

$S A=16+16.48(4)$
$S A$ triangh $=\frac{b \times h}{2}$

$$
S A=16+65.92
$$

$$
=\frac{4 \times 5 \cdot 24}{2}
$$

$$
=\frac{32.96}{20}
$$

$$
=16^{2} \cdot 48
$$

Example 4: A box of chocolates has a volume of $80 \mathrm{~cm}^{3}$. If its length is 10 cm and its height is 2 cm , what is its width?

$$
\begin{aligned}
& V=\text { A base } \times \text { height } \\
& V=1 \times w \times h \\
& \frac{80}{2}=\frac{10 \times w \times 2}{2} \\
& \frac{40}{10}=\frac{10 \times w}{10} \\
& 4=w \quad \therefore \text { the width of the } \\
& \text { box of chocolates } \\
& \text { is } 4 \mathrm{~cm}
\end{aligned}
$$

Today's Practice Questions:
Pos. 441-443 \#ar, 2b, 3b, 4b, 6, 8, 9 $\left(1 \mathrm{~cm}^{3}=1 \mathrm{~mL}\right), 11,12,13,15,17$

