MPM 1DI - Unit 5 Linear Relations

<u>Day 1 - Equation of a Line</u> Slope - Y intercept Form

Example 1: Determine the slope and y-intercept of each line. Then determine the equation of each

Example 2: Given the slope and y-intercept, write an equation of the linear relation and then graph the line.

b.
$$m = -2, b = 1$$
 $y = -2 \times 1$

c)
$$m = -\frac{1}{3}$$
, $b = 0$
 $\checkmark = -\frac{1}{3} \times$

d.
$$m = 5, b = 2$$

 $\sqrt{= 5x}$

Special Cases:

A. Horizontal Lines

- The slope of a horizontal line is <u>zero</u>.
- Putting that slope into the equation , we get , y = 0x + b \therefore y = b is the equation of a horizontal line.

B. Vertical Lines

• The slope of a vertical line does not exist.

We call this **undefined**.

- .. we cannot use slope y-intercept form for vertical lines.
- Vertical lines are written in the form of x = a, where a is the x-intercept.

Example 3: Interpreting graphs

The distance time graph of a person walking in front of a motion sensor is shown below.

- a. How far from the sensor did the person start walking? 2 netos
- b. How fast did the person walk?

C. Did the person walk away or towards the sensor?

- away
- d. What is happening after 5 seconds? 5 tanding still

Assigned Work

Pg 304-306 # 1, 2, 3, 4, 6(ace), 7(ab), 8, 9, 12