
b) fixed value
c) slope of the line 50

If R represents the money raised at a fundraising event, and p represents the number of people, determine how many people came if $\$ 6500$ was raised.

$$
\begin{aligned}
R & =50 p \\
\frac{6500}{50} & =\frac{50 p}{50} \\
130 & =p
\end{aligned}
$$

Unit 4
 Modelling Equations

(Chapter 5 in textbook!)
Day 5 - Connecting and Applying

So far, we have learned how to identify a linear relation from $a(n)$:

1. Graph

$$
y=m x \text { - Direct }
$$

2. Equation

$$
y=m x+b \text { - partial }
$$

3. Table of values

AND

- we can tell if a linear relation is direct or partial by the graph or by the form of the equation

$$
\begin{aligned}
& \text { Direct Var. } \\
& y=m x
\end{aligned} \quad \begin{aligned}
& \text { Partial Var. } \\
& y=m x+b
\end{aligned}
$$

- we can calculate slope of a line
(1)
$m=\frac{r i s e}{r u n}$
(2)
(3)
$m=\frac{\text { change in } y}{\text { change in } x} \quad \longrightarrow m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$

Now, let's tie it all together!!!

Ex. $2 y$ varies partially with x. When $x=0, y=3$ and
when $x=6, y=8$.
(1) $(0,3)$
x y
(2) $(6,8)$
J
\times y
a) Find the slope and the vertical intercept
(y intercept) of the line.

b) Write an equation to represent this partial variation.

$$
\begin{aligned}
& y=m x+b \\
& y=\frac{5}{6} x+3
\end{aligned}
$$

c) Graph the relation.

x-independent y-dependent
Ex. 3 A company tests heavy duty elastic bands by measuring how much they stretch when supporting various masses.

b) What does the point $(0,6.2)$ represent?
how long the rubber band is originally
c) Calculate the slope. What does it represent?

$$
\frac{3.4}{2}
$$

d) Write an equation in the form of $y=m x+b$.
e) Predict how long the elastic band would be when it is supporting 10 kg .

Today's Practice Questions

Pg 284-287\#1, 5, 7, 9, 10, 13, 16

