Warm Up: Plotting points on a Cartesian Plane
Given the following items place them appropriately on the Cartesian Plane:

MPM 1DI - Unit 4 Modelling with Graphs

(Chapter 5 in textbook!)
Day 3 - Slope

Today we will:

1. Define slope.
2. Identify different methods to determine slope of a line.

Lines and Slope

The slope of a line is the steepness of the line.
To calculate the slope, we look at the change in distance, both vertically and horizontally, from one point to another

Note: Instead of writing the word slope all the time, in math we use a lower case m. This comes from the french word "montier" which means to go up!

What is the slope of the skateboard ramp above?

$$
\begin{aligned}
& \text { slope }=\frac{\text { rise }}{\text { run }} \\
& \text { slope }=\frac{2}{5}
\end{aligned}
$$

Explain the meaning of the slope in this situation.

$$
\text { For evey/ } s \text { feet we rur horizontaly }
$$

$$
\text { we will rise } 2 \text { feet vertially }
$$

Example 1: Determine the slope of each line segment given on the graph below.
slope $A B=\frac{5}{4}$
Slope $C D=\frac{2}{8}=\frac{1}{4}$
Slope Af $=\frac{0}{5}=0$
Slope $G H=\frac{-9}{3}=-3$
slope $\mp J=\frac{4}{0}=$ undefined

Is there a way to calculate the slope if we are not given the graph, but instead just have two points that are on the line?

$$
\begin{aligned}
& m=\frac{\text { change in } y}{\text { change in } x} \\
& m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
\end{aligned}
$$

Example 2: Given that a line has a slope of $\frac{4}{1}$ and $\frac{R_{i s e}}{R_{0 n}}$
goes through the point $B(3,-5)$, find the coordinates of another possible point on the line.

Method 1: Using a graph

Method 2: Using the coordinate run (x direction) is $\quad 1$ rise (y direction) is 4 Add these to the x and y values of the given point.

$$
\begin{gathered}
(3+1,-5+4) \\
(4,-1)
\end{gathered}
$$

Example 3: Determine the slope of the line given by:

Method 1: Using a graph

$$
\text { Slope }=\frac{\text { Rise }}{\text { Run }}=\frac{40}{10}=\frac{4}{1}=4
$$

x	y
0	50
5	70
10	90
15	110
20	130

Method 2: Using the table

$$
m=\frac{\text { change in } y}{\text { change in } x} \frac{R_{\text {is e }}}{R_{n}}
$$

$$
m=\frac{1 / 2-y_{1}}{x_{2}-x_{1}}
$$

$$
m=\frac{110-70}{15-5}
$$

On your individual white boards....

Define slope

Write the slope of the following line segment

Write the slope of the line using the graph

X	Y
3	11
5	16
7	21
9	26
11	31

Today's Practice Questions:
pg 259-263 \# 1, 3, 5, 7, 9, 11, 13, 15, 19

